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Abstract

Condensation of a spherically symmetric sub-micrometer size vapor bubble is studied using

diffuse interface hydrodynamic model supplemented by the van der Waals equation of state with

parameters characteristic for argon. The bubble, surrounded by liquid, is held in a container with

temperature of the walls kept fixed. The condensation is triggered by a sudden rise of the walls

temperature. We find that the process is totally different from the evaporation. In particular, the

rapid change of the walls temperature excites the wave, which hits the interface and compresses

the bubble, leading to a considerable increase of the temperature inside. The condensation of

the sub-micrometer size bubble takes tens of nanoseconds, whereas evaporation of the same size

droplet lasts roughly fifty times longer. In contrast to evaporation the condensation process is

hardly quasi-stationary.
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I. INTRODUCTION

Evaporation/condensation processes attract much attention because they are ubiquitous

in nature and technological applications. Despite the large progress made since the end

of XIX century, the phenomena has not been studied in detail in mesoscale [1]. Recently

we have undertaken a task of describing the evaporation process of thin films and small

droplets in sub-micrometer size containers [2, 3]. We found that the evaporation process

proceeds practically quasi-stationary with the temperature and chemical potential both be-

ing continuous at the liquid/vapor interface. Under these assumptions the time dependence

of the radius of the evaporating droplet can be determined using the energy balance at the

interface [3]:

R2(t) = R2
∣∣
t=0

− t
2κv

ℓnl

(Tw − Tl) ,

where nl and Tl are the density and temperature of liquid inside the droplet, respectively;

κv is the heat conductivity of the vapor at the temperature T = Tl; ℓ is the latent heat of

transition per molecule at T = Tl; and Tw is the temperature of the container walls (just to

get some feeling: the time required for complete evaporation of argon droplet of radius 669Å

is ≈ 1.45µs for Tl = 128K and Tw = 143.2K). We have compared the time dependence of the

droplet radius predicted by the above simple formula with the results of molecular dynamics

simulation of evaporation of the droplet consisting of fifty thousands argon atoms [4] with

Tw = 300K, Tl = 138K, and, surprisingly enough, have found rather good agreement.

It is the purpose of this paper to describe the condensation of a small vapor bubble

in a sub-micrometer container. We are unaware of any previous study of condensation

of a micrometer or sub-micrometer bubbles, where the profiles of various thermodynamic

quantities are shown in the course of condensation. It is also unclear how the radius of such
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bubbles changes in the course of time. One may reasonably expect that the condensation

process is much different from evaporation since there are large difference in compressibility

and heat conductivity between vapor and liquid phases; moreover, when the vapor condenses

the heat is released which disturbs the condensation process.

Dynamics of the flows accompanied by condensation/evaporation processes is usually

modeled in sharp interface approximation [5]. In this approach the interface separating liq-

uid/vapor domains is assumed to be infinitely thin and equations of classical hydrodynamics

are used to describe the motion of each phase separately. The phase transition is captured by

setting the appropriate boundary conditions at the interface. Different boundary conditions

are employed in the literature. Some authors (see, e.g., Refs. [6, 7]) assume continuity of

the temperature across the interface. There is, however, theoretical [8] and experimental [9]

evidence that the temperature may be discontinuous. Another important issue concerns the

mass flux across the interface. Often the Hertz–Knudsen formula is employed in this place.

It is obtained under the assumption that the mean free path of molecules in the vapor phase

is much larger than the interfacial width [10]. This assumption may not hold if the vapor

phase is dense, and different boundary conditions have to be imposed, e.g., the continuity

of chemical potential [11, 12].

Here we pose the following questions: Is there any difference between evaporation of

droplets and condensation of bubbles? Can we describe the condensation of vapor bubbles in

some quasi-stationary approximation? Not too far from the liquid/vapor critical point these

questions can be addressed efficiently with the use of appropriately combined diffuse-interface

theory and hydrodynamics [13–16]. In this approach the interfacial region is represented

by continuous variations of density in a way consistent with microscopic theories of the

interface [17]. The need of the interfacial boundary conditions is thus eliminated.
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The paper is organized as follows: in the next section we briefly describe the model; in

section III we present numerical results and comment them a little; last section contains the

summary.

II. THE MODEL

We use diffuse interface model coupled with hydrodynamic equations [14–16, 18]. The

set of dynamical equations [15] comprises conservation of mass:

∂tρ + ∂α (ρuα) = 0, (1)

conservation of momentum:

∂t (ρuα) + ∂β

(
ρuαuβ + pδαβ − Kσ

(c)
αβ

)
= ∂βσ

(v)
αβ , (2)

and, equation for the entropy density:

T
{

∂t (ρs) + ∂α (uαρs)
}

= σ
(v)
αβ ∂αuβ − ∂αqα, (3)

where ρ is the medium mass density, uα is the velocity, s is the specific entropy (entropy per

unit mass), T is the temperature, p is the thermodynamic pressure, and K is the constant

related to the liquid–vapor surface tension. Greek indices label vector and tensor components

in Cartesian coordinates and the familiar summation convention: aαbα = axbx + ayby + azbz

is understood. ∂α stands for ∂/∂xα and ∂t denotes partial derivative with respect to the

time t.

The viscous stress tensor σ
(v)
αβ has the Newtonian form [19] with bulk viscosity set to zero

σ
(v)
αβ = ρν

(
∂αuβ + ∂βuα − 2

3
δαβ∂γuγ

)
.

The heat flux qα is given by the Fourier Law

qα = −κ∂αT, κ = cvnχ. (4)
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Here cv is the specific heat for constant volume, n is the particle density (i.e., ρ = mn,

where m is the particle mass). Kinematic viscosity ν as well as thermal diffusivity χ 1, are

assumed constant.

Momentum equation (2) coincides with the classical Navier–Stokes equation except of

the capillary stress tensor

σ
(c)
αβ =

(
n∇2n +

1

2
|∇n|2

)
δαβ − ∂αn ∂βn, (5)

which models capillary forces associated with the interface.

For more detailed description of the model interested reader is referred to the excellent

works [15, 16, 20, 21].

A. Dimensionless form

The variables are set to non-dimensional form by means of the length δL, energy δE

temperature δT and time δt scales obtained from the critical density nc (that is, particle

density at the critical point), critical temperature Tc and molecular mass m of the substance:

δL = n−1/3
c , δE = kBTc, δT = Tc, δ2

t =
mδ2

L

δE

, (6)

where kB is the Boltzmann constant. Dimensionless quantities (marked with tildes) can be

then related to the physical ones

xα = δLx̃α, t = δtt̃, ρ =
m

δ3
L

ñ, n =
1

δ3
L

ñ,

uα =
δL

δt

ũα, T =
1

Tc

T̃ , p =
δE

δ3
L

p̃, s =
δE

Tcm
s̃,

K̃ =
1

δEδ5
L

K, ν̃ =
δt

δ2
L

ν, c̃v =
1

kB

cv, χ̃ =
δt

δ2
L

χ.

1 Strictly speaking, thermal diffusivity (or thermotropic conductivity) is defined in Ref. [19] using the

specific heat at constant pressure χ = κ/ncp.
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In non-dimensional form Eqs. (1) - (3) remain unaltered except of the mass density ρ, which

is substituted by the dimensionless particle density ñ. Henceforth we omit the tildes and

always use dimensionless quantities unless stated otherwise.

B. Equations of state

The system of equations (1) - (3) is supplemented with two equations of state: p = p(n, T )

and s = s(n, T ), which can be obtained from the bulk free energy density f(n, T ). We use

approximate van der Waals formula, which, for noble gases, reads [22]

f(n, T ) = nT ln
n

3 − n
− nT − 9

8
n2 − 3

2
nT ln λT, (7)

where

λ =

(
1

3nc

)2/3
mkBTc

2π~2
.

In the last expression, nc and Tc are the dimensional critical density and temperature re-

spectively, and ~ is the Planck constant.

From (7) we have the pressure

p = −f + n

(
∂f

∂n

)

T

=
3nT

3 − n
− 9

8
n2, (8)

the entropy density

sn = −
(

∂f

∂T

)

n

=
5

2
n +

3

2
n ln λT − n ln

n

3 − n
, (9)

and the specific heat per molecule at constant volume: cv = 3/2.

For temperature T = 1 − δT , δT > 0 below Tc = 1, the formula (7) predicts coexis-

tence of liquid and vapor phases [22]; their densities nl and nv can be determined from

the requirement of equal pressures and chemical potentials in the two phases (see Fig.1).
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Surface tension of the stationary planar liquid–vapor interface is then given by the following

expression [17]

σ =
√

2K

nl∫

nv

dn
√

f(n) − µeqn + peq, (10)

where µeq and peq are equilibrium values of the chemical potential and pressure correspond-

ingly. For not too large δT the integral in the above formula can be evaluated to give

σ ≈
√

2K (δT )3/2

[
4 − 82

125
δT − 5533

61250
(δT )2

]
.

We have found this approximation to be sufficiently accurate for δT . 0.4.

To make a connection with the experiment we have chosen the material constants cor-

responding to argon. Physical properties of argon are freely available from the NIST web

site [23]. In particular, critical density and critical temperature of argon are

nc = 13407.4
mol

m3
, Tc = 150.687K,

which gives

δL = 4.99 × 10−10m, δt = 2.82 × 10−12s, λ = 235.9.

The remaining parameters can be approximated by the following constant values:

K = 1.3, ν ≈ 1, χ ≈ 2.

We note that the surface tension of the liquid–vapor interface given by Eq.(10) agrees quite

well with that of argon in wide range of temperatures (from T ∼ 0.6 up to the narrow critical

region near Tc = 1, in dimensionless units). On the other hand, neither kinematic viscosity

ν nor thermal diffusivity χ of argon are constants. The values chosen provide tolerable

approximation in the range of temperatures relevant to our study 0.8 . T . 1.
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C. Spherically symmetric case

We consider a vapor bubble and liquid in a container with the temperature of the walls

of container, Tw, kept fixed. Initially the system is in thermodynamic equilibrium. The con-

densation is triggered by a sudden increase of Tw. We assume that the system is spherically

symmetric and, moreover, that the resulting flow is also spherically symmetric, that is,

n = n(r, t), s = s(r, t), uα = u(r, t)xα/r,

where r2 = xαxα is the distance measured from the center of the bubble, and ∂r = ∂/ ∂r.

In spherical coordinates the dimensionless equations of motion (1) – (3) reduce to:

∂tn +
1

r2
∂r

(
r2nu

)
= 0, (11)

∂t

(
nu

)
+ ∂r

[
nu2 + p − K

(
n

{
∂2

rn +
2

r
∂rn

}
− 1

2
(∂rn)2

)
− 4

3
η

(
∂ru − 1

r
u

)]
= (12)

− 2

r
K (∂rn)2 +

4

r
η

(
∂ru − 1

r
u

)
,

∂t (ns) +
1

r2
∂r

(
r2

[
nsu − κ

∂rT

T

])
=

4

3

η

T

(
∂ru − u

r

)2

+ κ

(
∂rT

T

)2

. (13)

The container is thus approximated by a sphere of radius L. At the thermodynamic equi-

librium the walls are though to be equally preferably wetted by either phase, that is, the

Young’s angle is π/2. This condition implies a vanishing normal derivative of the density at

the walls [24]

∂rn|r=L = 0.

There is no flow of material through the walls, therefore

u|r=L = 0.
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Boundary conditions at the center of the droplet, r = 0, follow from the symmetry argument:

u|r=0 = ∂rn|r=0 = ∂rs|r=0 = 0.

The equations of motion (11) – (13) are then solved numerically using classical finite differ-

ences. We use fourth order accurate discrete approximations for the spatial derivatives and

third order Runge - Kutta scheme for time-marching [25]. Numerical scheme, similar to one

used here, is briefly outlined in Ref. [2]. We used spatial grid consisting of 1024 points for

L = 1024. We have repeated the computations on the twice finer grid and did not found

any significant differences.

III. EVOLUTION OF THERMODYNAMIC QUANTITIES

Initially the system is at thermodynamic equilibrium: the radial velocity, u, is zero

everywhere; the temperature of the walls of the container, Tw, is 0.85 (128K for argon);

the temperature inside the container is constant T = Tw. The initial density profile, shown

in Fig.2, corresponds to the vapor bubble with n = nv ≈ 0.32 of radius ≈ 134 (669Å

for argon) surrounded by the liquid with n = nl ≈ 1.81. The radius of the container is

L = ×1024 (≈ 0.51µm for argon). We suddenly rise the temperature of the walls of the

container to Tw = 0.95 (143.2K for argon) and monitor the evolution of the system towards

new equilibrium state, which corresponds to uniform density profile (the initial and the final

states are indicated at the phase diagram shown in Fig.1; the final state is in the one-phase

region).

The rapid increase of the temperature at the walls excites the wave which moves from

the walls towards the bubble (see Figs.3,4). The propagation speed of the wave is close to

the velocity of sound in the liquid. When the wave hits the interface it undergoes partial
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reflection and excites secondary wave in the vapor phase. It also sets the interface in mo-

tion — the bubble shrinks. The temperature of the vapor phase increases and reaches it’s

maximum value when the (spherical) wave reaches the center of the bubble, r = 0. Then

the wave gets reflected and propagates back towards the boundaries (see Fig.5). When it

reaches the interface from the vapor side, it again undergoes partial reflection. The waves

in the liquid phase are also reflected by the walls of the container; resulting interference

leads to rather irregular spatial profiles of the thermodynamics quantities. In particular,

this irregularity can be seen in the time dependence of the temperature and the density at

the center of the bubble, presented in Figs.7,8 respectively. The movie, showing the time

evolution of the density and temperature profiles, is available at [26].

The time dependence of the radius of the bubble is given in Fig.9 (the radius of the

bubble, R, is defined as the distance from its center to the inflection point at the interface,

that is, position where the sign of the second derivative of density changes). The rapid

compression of the bubble under the action of the wave is clearly seen in this figure. The

overall time dependence of the radius of the condensing bubble is quite different from one

observed for the evaporating droplet. The dynamics of the latter process is limited by

the heat flow, which leads to the familiar R2 ∝ t law. Here we see something different.

Roughly speaking, the radius of the bubble decreases linearly with time: the condensation

of a bubble of size 668Å takes ≈ 28ns. It is roughly fifty times faster than the evaporation

of the same size liquid droplet [3]. Moreover, evaporation, even in sub-micrometer scale,

proceeds quasi-stationary [3], whereas condensation does not.

One more interesting point concerns the peak temperature attained at the center of

the bubble (see Fig.10). As one can see from that figure, it can reach temperature order

of magnitude higher than the temperature at the container walls. It did not escape our
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attention that such temperature can promote various reactions inside a bubble or even

ionization of elements. The similar mechanism (focusing of the wave energy) is responsible

for sonoluminescence [27, 28].

IV. SUMMARY

We have considered the dynamics of iso-volumetric condensation of a spherically sym-

metric bubble using diffuse interface description. The dynamics has been found to be quite

different from that of evaporation. In particular, rather high temperatures (Fig.10) can be

attained in the condensing bubble if the process is triggered by rapid change of the con-

tainer’s walls temperature. The time dependence of the radius of the bubble appears to be

roughly linear in contrast to the square-root curve observed in the same conditions for the

evaporating droplet. The condensation process is hardly quasi-stationary: the bubble disap-

pears before mechanical equilibrium is approached and therefore the motion of the pressure

disturbances (waves) is equally important as the heat diffusion. That precludes from using

simple approximations which work well for the evaporating droplet.
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FIG. 1: The phase diagram of the liquid/vapor system described by by the bulk free energy

density (7). The solid line represents the liquid/vapor coexistence line, that is, the line where for

given density, n, and temperature, T , the pressures and the chemical potential in both phases are

equal. The dashed line represents the spinodal, that is, the line where isothermal compressibility

of the substance diverges. The initial (I) and the final (F) states of the simulation are also shown.
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FIG. 2: Initial density profile. The density, n, is in units of the critical density; the radial coordi-

nate, r, is in units of δL (for argon δL = 4.99 × 10−10m).
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FIG. 3: Profiles of the density (solid line), n, and the temperature (dashed line), T , at time t = 200

after the temperature of the container’s walls, Tw, was raised. The density, n, and the temperature,

T , are in units of the critical density and temperature respectively. The radial coordinate, r, and the

time t are in units of δL and δt respectively (for argon δL = 4.99×10−10m and δt = 2.82×10−12s).
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FIG. 4: Profiles of the density (solid line), n, and the temperature (dashed line), T , at time t = 400

after the temperature of the container’s walls, Tw, was raised. The units are the same as in Fig. 3.
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FIG. 5: Profiles of the density (solid line), n, and the temperature (dashed line), T , at time t = 550

after the temperature of the container’s walls, Tw, was raised. The units are the same as in Fig. 3.
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FIG. 6: Profiles of the density (solid line), n, and the temperature (dashed line), T , at time t = 8000

after the temperature of the container’s walls, Tw, was raised. The units are the same as in Fig. 3.
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FIG. 7: The temperature, T , at the center of the bubble, r = 0, as a function of time after the

wall’s temperature has been raised. The temperature is in units of critical temperature and the

time, t, is in units of δt (for argon δt = 2.82 × 10−12s).
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FIG. 8: The density, n, at the center of the bubble, r = 0, as a function of time after the wall’s

temperature has been raised. The density is in units of critical density and the time, t, is in units of

δt (for argon δt = 2.82× 10−12s). Practically the process of condensation is complete after t ≈ 104

time steps (≈ 28ns for argon).
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FIG. 9: Time dependence of the bubble radius, R. The radius is in units of δL and the time, t, is

units of δt (for argon δL = 4.99 × 10−10m and δt = 2.82 × 10−12s). The radius decreases roughly

linearly with time (after t ≈ 6500 the profile looses its inflection point for r > 0 and the radius

becomes undefined).
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FIG. 10: Highest temperature, Tmax, attained inside the bubble as a function of the wall’s temper-

ature Tw (in units of the critical temperature Tc). For argon (Tc = 150.6K) the increase of walls

temperature to 240K induces a maximal temperature ≈ 1356K inside the bubble.
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