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We present a theoretical description of diffusion of a sphere in polymer solution. The depletion layer

around the sphere affects its motion and leads to scale-dependent diffusion. We propose the model of

walking confined diffusion. Although it is different from anomalous diffusion, we show that the

experimental data generated by this process may have features characteristic of anomalous diffusion.

We give analytical formulas for the autocorrelation functions describing this type of motion in: i)

dynamic light scattering experiments and ii) fluorescence correlation spectroscopy experiments. We

compare our results to existing experimental data for polyethylene oxide, fd-virus, and F-actin

solutions.
1 Introduction

A sphere immersed in a solution of non-adsorbing polymer is

surrounded by a layer depleted of polymer chains.1,2 Due to the

changes of configurational entropy of polymer chains,3 the

monomer concentration gradually decreases as we approach the

surface of the sphere from the bulk of the polymer solution.

When the polymer is squeezed close to the surface of the sphere,

the entropy strongly decreases, and therefore the centers of mass

of polymer chains are excluded from the layer in close proximity

to the sphere surface. At the overlap polymer concentration, the

thickness of the ‘depletion layer’ is comparable to the radius of

gyration Rg of the polymer, and it decreases with increasing

polymer concentration.4

The presence of the depletion layer has profound consequences

for motion of the sphere through the polymer solution. The

sphere’s motion is particularly strongly affected when the radius

R of the sphere is comparable to the depletion layer thickness a.

The viscosity of polymer solutions is a stretched exponential

function of polymer concentration.5–7 Since this concentration is

non-uniform, the viscosity around the sphere is also non-uniform

and it changes by many orders of magnitude from the solvent

viscosity close to the surface of the sphere to the macroviscosity

of the bulk solution over the distance of the depletion layer

thickness i.e. tens of nanometres.8–10 The flow of the solution

around the sphere is complicated and slip effects are generated.

The Stokes’ resistance force is between the two limiting cases of

a pure solvent and a bulk solution. The effective drag force can
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be used to compute the diffusion coefficient according to the

Stokes–Sutherland–Einstein equation.7 This method however,

does not allow one to directly calculate the autocorrelation

functions for diffusion that are measured in typical experiments

of dynamic light scattering (DLS) or fluorescence correlation

spectroscopy (FCS). In this paper we present a study comple-

mentary to those of Dhont, Fan, and Tuinier,8–10 in which we

derive the DLS and FCS autocorrelation functions for diffusion

of spheres in polymer solutions, taking into account the presence

of the depletion layer. To derive the autocorrelation functions,

we approximate the motion of the sphere in the polymer solution

as ‘walking confined diffusion’:11 fast diffusion of the probe

inside the depletion layer, i.e. at small length scales, and slow

diffusion of the probe together with its depletion layer at large

length scales. From the autocorrelation functions, an experi-

mentalist can determine i) the thickness of the depletion layer; ii)

the diffusion coefficient of the fast diffusion; iii) the diffusion

coefficient of the slow diffusion. These experimentally deter-

mined parameters can be further analyzed using the viscosity

profiles and Stokes resistance force from the theory developed by

Dhont, Fan, and Tuinier.9,10,12

The diffusion of spheres with a depletion layer should bear

some resemblance to the anomalous diffusion, since the diffusion

occurring in inhomogeneous medium is scale-dependent. In

many papers, anomalous diffusion is observed in systems where

strong depletion effects should occur i.e. for R � Rg. For

example, Weitz et al.13,14 and Kang et al.15 investigated systems

which shared a common feature: R � Rg, e.g. R ¼ 210 nm in

a polyethylene oxide (PEO) solution of a molecular weight of

4 M (Rg ¼ 135 nm). Mason and Weitz13 assumed that diffusion

occurs in a homogeneous medium and described the motion of

the probe in terms of anomalous diffusion. We believe that any

sign of anomalous diffusion in such systems should be
This journal is ª The Royal Society of Chemistry 2011
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approached with caution and one should consider whether the

description in terms of the depletion layer effect might be more

appropriate.

The paper is organized as follows: In Section 2 we present the

model (Subsection 2.1), then we derive the formulas for the mean

square displacement (Subsection 2.2) and discuss the similarities

and differences between walking confined diffusion and anom-

alous diffusion (Subsection 2.3). Next, we derive the diffusion

propagator (Subsection 2.4), as well as the DLS and FCS auto-

correlation functions for the diffusion with depletion layer

(Subsection 2.5). In Section 3 we predict the experimental

consequences of the depletion layer effect for a system with

parameters typical for a spherical probe diffusing in polyethylene

glicol (PEG) solution and discuss the similarity of these predic-

tions to the experimental results described in literature in terms

of anomalous diffusion. Subsection 3.1 discusses the behavior of

MSD for a probe diffusing with depletion layer; Subsection 3.2

and 3.3 show the typical shapes of DLS and FCS autocorrelation

functions for the diffusion with depletion layer; they also discuss

how the measured diffusion coefficients would change if one

made an attempt of fitting the two-component diffusion or

single-component free diffusion autocorrelation functions to the

experimental data in which the depletion layer effect is present.

In the Section 4 we compare our theory with experimental data

for the solutions of PEO, fd viruses and F-actin. Section 5

summarizes our findings.
2 Walking confined diffusion as a model of diffusion
with depletion layer

2.1 The model

We propose a simplistic model of the depletion layer (Fig. 1) as

a sphere of a radius Rtot, diffusively moving with the diffusion

coefficient DM in the polymer solution. Enclosed in the sphere is

a probe of a radius R, moving with the diffusion coefficient Dm.

The boundaries of the sphere are assumed to be reflecting. We

assume that Dm [ DM to ensure that the diffusion of the sphere

and the confined diffusion of the probe inside the sphere can be
Fig. 1 Walking confined diffusion as a model of diffusion with depletion

layer. The motion of the probe in the medium is split into two indepen-

dent components: The depletion layer is a sphere of the radius Rtot that

freely diffuses with the coefficientDM. Enclosed in the sphere is the probe

of the radius R, diffusing with the coefficient Dm [DM. The boundaries

of the sphere are reflecting.

This journal is ª The Royal Society of Chemistry 2011
considered as independent. This type of motion is called ‘walking

confined diffusion’.11

The model captures the essential features of diffusion with

depletion layer: In short time scales, only the fast motion of the

probe in the solvent is visible in the form of free diffusion with the

microscopic coefficient Dm. In long time scales, only the slow

motion of the sphere together with its depletion layer is visible in

the form of free diffusion with the macroscopic coefficientDM. In

the intermediate time scales, a crossover occurs between those

two diffusion regimes.

In the short time scale (the relaxation time of the depletion

layer), the microscopic diffusion coefficient Dm depends on the

solvent viscosity and on the hydrodynamic flow profile around

the probe. The macroscopic diffusion coefficient of the spherical

probe diffusing together with its depletion layer is

DM ¼ kBT

6phMðRþ aÞ; (1)

where hM is the macroscopic viscosity of the polymer solution

(see, however, Ho1yst et al.7 for scale-dependent viscosity), and
a ¼ Rtot � R is the depletion layer thickness.

In this study, we make the assumptions about the polymer

solution that enable us to calculate a using the literature data16,17

for PEG-2M, which we will further use to predict the possible

experimental results (Section 3). We assume that the polymer

solution is dilute, so that a does not depend on its concentration,

and that the solution can be described in the Gaussian limit, i.e.

as infinitely long and thin polymers. In such a case, the formula

of Tuinier18 applies:

a ¼ R

"
1þ 6ffiffiffi

p
p Rg

R
þ 3

�
Rg

R

�2
 !1=3

�1

#
; (2)

where Rg is the radius of gyration of the polymer. However, the

diffusion propagator that we derive below uses a generalized

depletion layer thickness a, which can be obtained experimen-

tally or calculated for other cases of polymer solutions.

2.2 Mean square displacement for diffusion with depletion layer

Instead of calculating the exact propagator for walking confined

diffusion, we adopt the technique used in modelling of anoma-

lous diffusion:19–23 Since the autocorrelation functions in FCS

and DLS depend on the mean square displacement (MSD) of the

probe, we construct the propagator of free diffusion with the

time-dependent diffusion coefficient D(t), which generates the

same MSD as the process of walking confined diffusion. Since

the diffusive motions of the probe and the sphere are indepen-

dent and hrmi ¼ hrMi ¼ 0, their mean square displacements are

additive. The MSD for the freely diffusing sphere is
hr2M(t)i ¼ 6DMt. (3)

The MSD for the confined diffusion inside an immobile sphere

is24

r2mðtÞ
� � ¼ 6a2

5
� 12a2

XN
n¼1

exp

�
� b2

1n

Dmt

a2

�
1

b2
1n

	
b2
1n � 2


; (4)
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Fig. 2 Mean square displacement for walking confined diffusion. Black

line: the approximate eqn. (6). Gray line: two first terms of the exact eqn.

(5). Triangles: Simulation of walking confined diffusion (Fig. 1). Circles:

Simulation of free diffusion with the time-dependent diffusion coefficient

D(t) given by eqn. (9). The slope of the dotted line is 6Dm, whereDm is the

microscopic diffusion coefficient. The slope of the dashed line is 6DM,

where DM is the macroscopic diffusion coefficient. Thin vertical line:

crossover time s ¼ a2/(5Dm). Inset: Theoretical curve in the log–log scale.

The values of the parameters (see Section 3.1) are chosen typical for

a sphere of diameter 90 nm diffusing in a 2% solution of PEG-2M.
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where b1n are the (non-zero) zeros of the derivatives of the

spherical Bessel function, j1
0(b1n) ¼ 0. The first terms of eqn. (4)

are the following:

r2mðtÞ
� � ¼ 6

5
a2

0
@1� 0:99e�

4:33Dmt
a2 � 0:0085e�

35:29Dmt
a2 �.

1
A (5)

Eqn. (4) can be approximated by

r2mðtÞ
� � ¼ 6Dms

0
@1� e�

t
s

1
A; (6)

where s ¼ a2/5Dm is the characteristic equilibration time. The

MSD for walking confined diffusion is therefore:

r2ðtÞh i ¼ r2MðtÞ
� �þ r2mðtÞ

� �
¼ 6DMtþ 6

5
a2 1� e�

5Dmt
a2

� �
:

(7)

In the long time limit, hr2mi tends to 6a2/5, in accordance with eqn.

(4). In experiments, the diffusion of probes with depletion layer

can be detected as diffusion with a time-dependent diffusion

coefficient D(t), defined by the relation19

hr2(t)i ¼ 2d
Ð
t
0D(t0)dt0, (8)

where d ¼ 3 is the spatial dimension. Then

DðtÞ ¼ DM þDme
�t
s: (9)

Assuming that DM � Dm, D(t) transitions from Dm on a short

time scale to DM on a long time scale. Note that Daumas et al.11

proposed a formula similar to eqn. (7) for MSD in 2-dimensional

walking confined diffusion. However, their heuristic derivation

was incorrect and it would not give the correct formula (eqn. (7))

in 3 dimensions.
2.3 Walking confined diffusion vs. anomalous diffusion

Anomalous diffusion is a process with hr2(t)i � ta, where a s
1 (a being the slope of the log–log plot of the MSD, see

Fig. 2, inset). Walking confined diffusion is not anomalous

diffusion. However, similarly as in the Rouse and the repta-

tion models,25 the MSD (eqn. (7)) in the walking confined

diffusion model can be approximated by ta in various time

scales. a ¼ 1 in the short (t / 0) and long time scales (t /

N), and a < 1 in the intermediate time scales. For this

reason, the experimental data generated by the process of

walking confined diffusion can be similar to anomalous

diffusion, if the measurement covers the intermediate time

scales only. For the crossover time t ¼ s,

a ¼ Dm þDMe

Dmðe� 1Þ þDMe
; (10)

and assuming that DM � Dm,

az
1

e� 1
z0:6: (11)

At a certain time t > s the log–log plot of the MSD has the

smallest slope, however the value of a in this point can be
7368 | Soft Matter, 2011, 7, 7366–7374
obtained only numerically (see Section 3.1 for example results).

This scaling may be similar to the that in the Rouse model (where

a changes from 1 through 1/2 again to 1) or in the reptation

model (where a changes from 1 through 1/2, 1/4, again to

1/2 and 1).25
2.4 Approximate propagator for diffusion with depletion layer

To obtain the approximate propagator p(r0, r, t) for walking

confined diffusion, we construct a process of free diffusion

with the time-dependent diffusion coefficient D(t), such that it

has the same MSD (eqn. (7)) as the process of walking

confined diffusion. We solve the modified diffusion equation

with D(t):

v

vt
pðr0; r; tÞ ¼ DðtÞV2pðr0; r; tÞ; (12)

and by separation of variables we get the time-dependent part of

p(r0, r, t):

TðtÞ � e
C

Ð 
DðtÞdt

¼ e

C
2d
hr2ðtÞ〉

(13)

where C is an integration constant. By analogy to the case of

a constant diffusion coefficient, the propagator can be, therefore,

written as the Gaussian:

pðr0; r; tÞ ¼ 1�
2p

d
hr2ðtÞ〉

�d=2 e�
ðr0�rÞ2
2
d
hr2ðtÞ〉: (14)

Substituting the MSD (eqn. (9)) and d ¼ 3, we get the approxi-

mate propagator for walking confined diffusion:
This journal is ª The Royal Society of Chemistry 2011
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pðr0; r; tÞ ¼

exp
�ðr0 � rÞ2

4DMtþ 4

5
a2

0
@1� e

�5Dmt
a2

1
A

2
6666664

3
7777775

4pDMtþ 4p

5
a2 1� e

�5Dmt
a2

 !" #3=2: (15)

2.5 DLS and FCS autocorrelation functions for diffusion with

depletion layer

The autocorrelation functions for DLS or FCS, calculated based

on the propagator (eqn. (15)), contain the MSD for walking

confined diffusion. For DLS, the autocorrelation function is the

Fourier transform of eqn. (15):26

gðq; tÞ ¼ e�
1
3
q2 r2ðtÞ� �

¼ Ae�
1
3
q2½6DMtþ 6

5
a2ð1� e�5Dmt=a

2Þ�:
(16)

For FCS, the autocorrelation function27 is the integral of eqn.

(15) with the focal volume:

GðtÞ ¼
 
1þ 2

3

hr2ðtÞ〉
w2

xy

!�1 
1þ 2

3

hr2ðtÞ〉
u2w2

xy

!�1=2

¼ 1þ 2

3

�
6DMtþ 6

5
a2 1� e�5Dmt=a

2
� ��
w2

xy

0
BB@

1
CCA

�1

� 1þ 2

3

�
6DMtþ 6

5
a2 1� e�5Dmt=a

2
� ��

u2w2
xy

0
BB@

1
CCA

�1=2

;

(17)

where wxy is the lateral size of the Gaussian volume, wz is its

transversal size, and u ¼ wxy/wz is its elongation.
3 Predictions of experimental consequences of the
depletion layer effect

3.1 Mean square displacement

In further considerations, we will use the values of parameters

typical for a spherical probe of the radius R ¼ 45 nm diffusing in

0.4% solution of PEG-2M. We assume that the microscopic

diffusion coefficient can be approximated by Dm ¼ kBT/

(6phmR), where kB is the Boltzmann constant, T is temperature

and hm is the viscosity of the solvent. Based on the experimental

data of Shimizu and Kenndler,16 we take the macroscopic

viscosity of the polymer solution hM ¼ 6.5 hm, where the

microscopic viscosity hm ¼ 1.002 cP is the viscosity of water at

the temperature T¼ 20 �C. The radius of gyration of PEG-2M in

water, as a function of the molecular mass Mp ¼ 2 � 106, is

given17 by Rg ¼ 0.02M0.58
p ¼ 90.3 nm. Assuming that PEG-2M

can be described in the Gaussian limit, we use eqn. (2) to

calculate the depletion layer thickness a ¼ 77 nm. The micro-

scopic diffusion coefficient in water is Dm ¼ 4.8 � 10�12 m2 s�1.

The macroscopic diffusion coefficient of the probe diffusing
This journal is ª The Royal Society of Chemistry 2011
together with its depletion layer in the polymer solution is

DM ¼ 2.7� 10�13 m2 s�1 (eqn. (1)), thus differing fromDm by one

order of magnitude. The relaxation time, which marks the

crossover between the micro- and macroscopic diffusion, is

s ¼ 0.25 ms (eqn. (6)).

Fig. 2 shows the prediction of the dependence of MSD on time

for the above values of parameters. TheMSDs obtained from the

simulation of walking confined diffusion (Fig. 1) and from the

simulation of free diffusion with the time-dependent diffusion

coefficient D(t), given by eqn. (9), are both in perfect agreement

with the theoretical MSD (eqn. (7)).

For t ¼ s, the MSD scales as ta with a z 0.62. For the time

tz 1.1 ms, in which the log–log plot of theMSD has the smallest

slope, a z 0.24. This scaling is similar to that of the motion of

a monomer in the reptation model.25

Similar dependence of MSD on time was found in various

experiments with diffusion in crowded environment. In single-

molecule tracking experiments, it was detected as the effect of

constrained diffusion of spherical probes in F-actin solu-

tions,14,28–31 spherical probes in fd-virus solutions,15 carbon

nanotubes in porous agarose networks,32 promyelocytic leukemia

nuclear bodies33 and mRNA-protein complexes34 in cell nucleus,

and transmembrane MHC proteins on cell membrane.35 In light

scattering experiments, it was found in diffusion of spherical

probes in PEO solutions20 (diffusing wave spectroscopy (DWS)

and quasielastic light scattering (QELS)), in F-actin solutions36

(DWS), and in fd-virus solutions15 (DLS). In FCS experiments,

similar shapes ofMSD curves were found in diffusion of probes in

star polyisoprenes.37Some of those results were described in terms

of hop diffusion (brownian motion constrained by immobile

compartments)35 or anomalous diffusion.14,15,28–30,32,33,36,37
3.2 Dynamic light scattering: Comparison between two-

component diffusion and walking confined diffusion

In this section we compare our model of walking confined

diffusion (eqn. (16)) with the typical model of two-component

diffusion. Using the parameter values given by eqn. (2 � 1), we

generated 100 artificial ‘data points’ (Fig. 4) from the theoretical

formula for the DLS autocorrelation function (eqn. (16)) and

made an attempt of a double-exponential fitting:

gdouble,fit(q,t) ¼ [Aexp(�q2D1t) + (1 � A)exp(�q2D2t)]
2, (18)

where q is the scattering vector length and D1, D2 are coefficients

of a two-component diffusion. The results (Table 1, Fig. 3) give

different values of A, D1, and D2 for different scattering angles.

For q2 # 1015 m�2 the fits are good, however, for q2 above this

value the fitting error of D1 increases excessively (but a single

exponential can be fitted instead). Additionally, the double-

exponential fitting was difficult for any q, because the fit

converged to many different local minima.

We also made an attempt of a brute-force single exponential

fitting for all q:

gfit(q, t) ¼ exp(�2q2Dfitt), (19)

Fig. 4 shows that the single exponential fits well for large

scattering angles. The fitted diffusion coefficient Dfit increases
Soft Matter, 2011, 7, 7366–7374 | 7369
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Table 1 Fit of two-component diffusion to walking confined diffusion
data points

q2 [m�2] A D1 [10
�13 m2 s�1] D2 [10

�13 m2 s�1]

1 � 1014 0.88899 � 4 � 10�5 2.7021 � 0.0007 427.4 � 0.4
5 � 1014 0.567 � 0.001 2.85 � 0.03 108.0 � 0.5
1 � 1015 0.373 � 0.004 4.0 � 0.1 75.0 � 0.6
2 � 1015 0.163 � 0.009 3.3 � 0.6 57.0 � 0.6

Fig. 3 For small scattering angles in DLS, walking confined diffusion

can be well fitted with two-component diffusion, however the diffusion

coefficients D1, D2 are different for each q (Table 1). Symbols: Walking

confined diffusion, artificial ‘data points’, generated using eqn. (16). Solid

lines: Fitted autocorrelation function for two-component diffusion

(eqn. (18)).

Fig. 5 The fitted free diffusion coefficient Dfit depends on q2 when free-

diffusion fitting (eqn. (19)) is attempted to the DLS ‘data points’ for

walking confined diffusion. The ‘data points’ were generated from eqn.

(16), as in Fig. 3 and 4. Main figure: Non-linear dependence of the fitted

inverse relaxation time sfit�1 ¼ Dfitq
2 on q2. Inset: For small q2, Dfit tends

to the macroscopic diffusion coefficientDM (dashed line), and for large q2

it tends to the microscopic diffusion coefficient Dm (dotted line).
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with q2 in a non-linear way (Fig. 5). For small scattering angles,

Dfit tends to the macroscopic diffusion coefficient DM, and for

large scattering angles it tends to the microscopic diffusion

coefficient Dm.
Fig. 4 For large scattering angles in DLS, walking confined diffusion

can be well fitted with one-component free diffusion, however the

diffusion coefficients Dfit is different for each q (Fig. 5). Symbols:

Walking confined diffusion, artificial ‘data points’, generated using eqn.

(16). Solid lines: Fitted autocorrelation function for one-component free

diffusion (eqn. (19)).

7370 | Soft Matter, 2011, 7, 7366–7374
Similar shapes of autocorrelation functions were found in

DLS experiments with diffusion of probes in entangled solutions

of wormlike surfactant micelles38 and diffusion of aggregates in

solutions: ovalbumin39 and DNA.40 A non-linear dependence of

the fitted inverse relaxation time sfit ¼ Dfitq
2 on q2, similar to that

in the Fig. 5, was found in the experiments with diffusion of

probes in ferrofluids.41 Some of those experimental results were

described in terms of anomalous diffusion.38,41
3.3 Fluorescence correlation spectroscopy

Using the parameter values given by eqn. (2 � 1), we generated

artificial ‘data points’ from the theoretical formula for the FCS

autocorrelation function (eqn. (17)), assuming wxy ¼ 180 nm and

u ¼ 5 as typical parameters of the FCS focal volume. We made

an attempt of a brute-force fitting of the autocorrelation function

for free diffusion (Fig. 6),

GfitðtÞ ¼ A

 
1þ 4Dfitt

w2
xy

!�1 
1þ 4Dfitt

u2w2
xy

!�1=2

; (20)

to the artificial ‘data points’. We tested linear and logarithmic

binning (Fig. 6). Fitting yields the values ofDfit¼ 2.9� 10�13m2 s�1

for linear binning, and Dfit ¼ 3.6 � 10�13 m2 s�1 for logarithmic

binning, close to themacroscopic diffusion coefficientDMbecause

most of the ‘data points’ correspond to times t greater than the

relaxation time s. Based on these results, we predict that the

attempt of fitting the FCS autocorrelation function for free

diffusion (eqn. (20)) to walking confined diffusion data allows one

to detect the macroscopic diffusion only.

A similar effect was found in the experiment with globular

protein in aqueous hyaluronan solution,42 where FCS (with free

diffusion assumed) was able to detect the macroscopic diffusion

coefficient only, while other measurement methods detected

the microscopic diffusion coefficient. Similar shapes of
This journal is ª The Royal Society of Chemistry 2011
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Fig. 6 Only macroscopic diffusion can be detected when free-diffusion

fitting (eqn. (20)) is attempted to the FCS ‘data points’ for walking

confined diffusion. The ‘data points’ were generated from eqn. (17). The

fitted diffusion coefficients for both linear (dotted line) and logarithmic

binning (dashed line) are close to the macroscopic diffusion coefficient

DM because most of the ‘data points’ correspond to times t greater than

the relaxation time s. To mimic linear binning, 2 � 106 ‘data points’ were

generated, starting from t ¼ 10�6 s, every 10�6 s. To mimic logarithmic

binning, 170 ‘data points’ were generated starting from t ¼ 10�6 s,

incremented by the factor 1.1. For the sake of clarity of the figure, we

present the ‘data points’ as connected by lines.

Fig. 7 The model of walking confined diffusion fitted to the MSD of

polystyrene beads (R ¼ 485 nm) in a 4 wt% was 900 kDa PEO solution

(Dasgupta et al.20). The model fits well for the time scales larger than

10�1 s (the crossover time is s ¼ 2 s). The fit diverges significantly for

shorter times. Symbols: experimental data. Solid line: theory fitted

(eqn. (7)). Dm ¼ 120 � 6 nm2 s�1, DM ¼ 103 � 1 nm2 s�1, a ¼ 36 � 1 nm.

Table 2 Depletion layer thickness predicted by our theory for existing
experimental data, compared with the probe and mesh sizes

Reference
Probe
radius R [nm]

Depletion
layer
thickness
a / [nm]

Mesh
size x [nm] 2R/x a/x

Dasgupta et al.20 485 36 �100 �102 �101

Kang et al.15 500 77 391 2.6 0.2
500 81 493 2.0 0.2
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autocorrelation functions, found in experiments with in diffusion

of probes in star polyisoprenes37 and actin diffusion in living

cells,43 were theoretically described in terms of anomalous

diffusion.
500 117 683 1.5 0.2
Valentine et al.45 500 471 8000 0.1 0.06

500 157 2000 0.5 0.02
Gardel et al.29 420 75 300 2.8 0.3

320 92 300 2.1 0.3
230 220 300 1.5 0.7

Gisler & Weitz36 1500 67 n/a n/a n/a
4 Comparison with experimental data

In this section we compare the model of walking confined

diffusion to the existing experimental data.
260 26 n/a n/a n/a
Crocker et al.30 235 226 n/a n/a n/a
4.1 Flexible polymer: Polyethylene oxide

The only published data for probes in the solution of flexible

polymers that we found were the results of Dasgupta et al.20

(Fig. 7). The MSD of polystyrene beads (R¼ 485 nm) in a 4 wt%

900 kDa PEO solution was obtained from QELS and DWS

measurements. The beads were much larger than the mesh size,

which was a few nanometres. To date, no theory has been fitted

to those results. Our formula for MSD (eqn. (7)) fits well for the

time scales larger than 10�1 s, while the crossover time s ¼ 2 s.

The fit diverges for shorter times. The tracer diameter is 2 orders

of magnitude larger than the mesh size x (Table 2). Therefore,

Dm � DM, which means that the experimental system does not

fulfill the assumptions of our model (the diffusion of the probe

and the diffusion of the depletion layer may be coupled).
4.2 Rigid polymers

Interestingly, we found that the model of walking confined

diffusion fits very well to the diffusion of probes in the solutions

of more rigid polymers (fd viruses and F-actin).
This journal is ª The Royal Society of Chemistry 2011
4.2.1 Fd viruses.Kang et al.15 used DLS to measure the MSD

of tracer spheres (R ¼ 500 nm) in the solution of rods of a well-

defined length (fd-virus, contour length L ¼ 880 nm, thickness

6 nm). To date, no theory has been fitted to those results. We

estimated the mesh size x assuming that at a given concentration

the rods form a cubic lattice of the edge x. We used the data of

Yodh et al.44 to convert the fd-virus concentrations used by Kang

et al.15 into the number density. The overlap density would be 12

rods per volume L3. Table 2 shows that the rods overlap (x < L)

and that the tracer diameter 2R � x. Our theoretical formula for

MSD (eqn. (7)) agrees very well with the experimental data

(Fig. 8).

4.2.2 F-actin. Valentine et al.45 used single-particle tracking

to measure the MSD of PEG-coated tracers (R ¼ 500 nm)

moving in the solution of F-actin and the actin-binding protein

scruin that causes bundling of actin. The degree of bundling and

bundle thickness depends on the actin to scruin ratio.46
Soft Matter, 2011, 7, 7366–7374 | 7371
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Fig. 8 The model of walking confined diffusion describes very well the

MSD of tracers (R ¼ 500 nm) in the solution of fd viruses (Kang et al.15).

Symbols: experimental data for various fd-virus concentrations c. Solid

line: theory fitted (eqn. (7)). A: c ¼ 4.89 mg ml�1, Dm ¼ 125 � 7 nm2 s�1,

DM¼ 14.3� 0.5 nm2 s�1, a¼ 77� 1 nm.;: c¼ 2.51mgml�1,Dm¼ 230�
10 nm2 s�1,DM¼ 68.6� 0.4 nm2 s�1, a¼ 81� 1 nm.:: c¼ 0.90 mg ml�1,

Dm ¼ 290 � 20 nm2 s�1, DM ¼ 204 � 3 nm2 s�1, a ¼ 117 � 4 nm.

Fig. 9 The model of walking confined diffusion describes well the MSD

of PEG-coated tracers (R ¼ 500 nm) moving in the solution of F-actin

and scruin (Valentine et al.45). The fits slightly diverge for times smaller

than the crossover time s. Symbols: experimental data for varying actin/

scruin ratios s. Solid line: theory fitted (eqn. (7)). -: s ¼ 1, Dm ¼ 43000 �
1000 nm2 s�1, DM ¼ 7700 � 300 nm2 s�1, a ¼ 471 � 8 nm, s ¼ 1 s. C:

s ¼ 0.1, Dm ¼ 32000 � 1000 nm2 s�1, DM ¼ 90 � 20 nm2 s�1, a ¼ 157 �
1 nm, s ¼ 0.15 s.

Fig. 10 Themodel of walking confined diffusion describes relatively well

theMSD of tracers in the solution 0.9 mgml�1 of F-actin (Gardel et al.29).

The fits are quite good for larger tracers (R ¼ 420 nm and 320 nm),

although they slightly diverge for times smaller than the crossover time s.
ForR¼ 230 nm, the divergence is significant. Symbols: experimental data

for varying tracer radiiR. Solid line: theoryfitted (eqn. (7)).-:R¼ 420nm,

Dm ¼ 15800 � 800 nm2 s�1, DM ¼ 29 � 3 nm2 s�1, a ¼ 75.1 � 0.4 nm,

s¼ 0.07 s.C:R¼ 320nm,Dm¼ 19000� 1000nm2 s�1,DM¼ 79� 6nm2 s�1,

a¼ 92.6� 0.5 nm, s¼ 0.09 s.::R¼ 230 nm,Dm¼ 16000� 1000 nm2 s�1,

DM ¼ 1380 � 90 nm2 s�1, a ¼ 220 � 5 nm, s ¼ 0.6 s.

Fig. 11 The experimental data of Gisler & Weitz36 are inconsistent. The

MSDof probes in a 1.5mgml�1 F-actin solutionwasmeasuredusingDLS.

The probes ofR¼ 1500 nm diffuse one order of magnitude faster than the

probes of R ¼ 260 nm. This unphysical result may be due to a wrong

normalization of theDLSautocorrelation function.The fits of thewalking

confined diffusion model strongly diverge in the time scales shorter than

the crossover time s. Thick lines: experimental data. Thin lines: theory

fitted (eqn. (7)). ForR¼ 1500 nm:Dm¼ 2300� 300 nm2 s�1,DM¼ 10.9�
0.7 nm2 s�1, a ¼ 67 � 1 nm, s ¼ 0.4 s. For R ¼ 260 nm: Dm ¼ 600 �
80 nm2 s�1, DM ¼ 1.0 � 0.1 nm2 s�1, a ¼ 26.3 � 0.5 nm, s ¼ 0.2 s.
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The concentration of actin was 0.5 mg ml�1, and the amount of

scruin was varied. To date, no theory has been fitted to those

results. We used the data of Shin et al.46 to estimate x for various

actin:scruin ratios. Table 2 shows that the tracer diameter 2R� x.

Our theoretical formula for MSD (eqn. (7)) agrees well with the

experimental data (Fig. 9), although the fit slightly diverges for

times smaller than the crossover time s.
We also obtained relatively good fits to the data of Gardel

et al.29 (Fig. 10). The MSD of tracers (R ¼ 420 nm, 320 nm, and

230 nm) in the solution 0.9 mg ml�1 of F-actin was measured by

single molecule tracking. To date, no theory has been fitted to

those results. Our theoretical formula for MSD (eqn. (7)) fits
7372 | Soft Matter, 2011, 7, 7366–7374
quite well for larger tracers (2R/xz 2.8 and 2R/xz 2.1, Table 2),

however it slightly diverges for times smaller than the crossover

time s. For 2R/x z 1.5, the divergence is significant.

However, the MSD data for F-actin should be studied with

caution because the solutions may not be well controlled. The

F-actin exhibits a polydisperse length distribution.15
This journal is ª The Royal Society of Chemistry 2011

http://dx.doi.org/10.1039/c1sm05217a


Fig. 12 The experimental data of Crocker et al.30 are inconsistent with

the data of Gardel et al.29 (single-particle tracking was used in both

experiments): Larger probes diffuse slightly faster in a higher concen-

tration of F-actin solution than smaller probes in a lower concentration.

The fits of the walking confined diffusion model strongly diverge in the

time scales shorter than the crossover time s. Thick lines: experimental

data. Thin lines: theory fitted (eqn. (7)). For Crocker et al., R ¼ 235 nm,

c ¼ 1 mg ml�1: Dm ¼ 89000 � 60000 nm2 s�1, DM ¼ 3100 � 100 nm2 s�1,

a ¼ 226 � 3 nm, s ¼ 0.1 s. For Gardel et al., R ¼ 230 nm (a/x z 0.6),

Dm ¼ 16000 � 1000 nm2 s�1, DM ¼ 1380 � 90 nm2 s�1, a ¼ 220 � 5 nm,

s ¼ 0.6 s (same as in Fig. 10).
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Uncontrolled bundling and continuous polymerization and

depolymerization of the filaments may also occur.15 We have

found papers in which the data are inconsistent: a) DLS (Fig. 11):

In Gisler & Weitz36 (1.5 mg ml�1 F-actin solution), larger probes

(R¼ 1500 nm) diffuse one order of magnitude faster than smaller

probes (R¼ 260 nm). This unphysical result may be an artifact of

wrong normalization of the DLS autocorrelation function. b)

Single-particle tracking (Fig. 12): In Crocker et al.,30 larger

probes in a higher F-actin concentration (R ¼ 235 nm,

c ¼ 1 mg ml�1) diffuse faster than slightly smaller probes in

a lower concentration, measured by Gardel et al.29 (R ¼ 230 nm,

c ¼ 0.9 mg ml�1).

In the above examples, a) and b), the theoretical MSDs

strongly diverge in the time scales shorter than the crossover time

s. We hypothesize that this divergence is due to polydispersity of

the solution. The presence of short molecules ‘softens’ the

boundary of the depletion layer, while our model assumes an

ideally reflecting boundary. On the other hand, the examples of

rigid polymers of a well-defined length (Fig. 8, 9) fit well to our

model probably because the rods form a rigid cage around the

probe, such that the assumption of reflecting boundary condi-

tions is fulfilled.
5 Conclusions

Anomalous transport in crowded environments, such as the

interior of living cells, increasingly attracts the attention of

researchers.47,48 Recently, elaborate theoretical tools have been

developed to understand the non-linear behavior of MSD49 in

systems with anomalous diffusion and to predict the FCS auto-

correlation functions50 for that type of motion. In this paper, we

show that the effects characteristic of anomalous diffusion may
This journal is ª The Royal Society of Chemistry 2011
occur due to the diffusion with depletion layer, for which the

simplest theoretical description is walking confined diffusion, i.e.

the sum of two independent motions: i) fast confined diffusion of

the probe within a spherical domain filled with solvent (micro-

scopic diffusion), and ii) slow free diffusion of the domain with

the probe through the polymer solution (macroscopic diffusion).

We derive the formula that describes the non-linear behavior of

MSD in time for walking confined diffusion. Using that formula,

we construct the approximate propagator and the corresponding

autocorrelation functions for DLS and FCS.

We theoretically predict the experimental consequences of the

existence of depletion using the literature data for PEG.We show

the non-linear behavior of MSD and determine the crossover

time between the microscopic and macroscopic diffusion, as well

as the anomalous exponents corresponding to different time

scales. Using the theoretical formulas for the autocorrelation

functions, we generate artificial ‘data points’ that mimic the DLS

and FCS experiments. For DLS, we test the fitting the two-

component diffusion or single-component free diffusion auto-

correlation functions to walking confined diffusion data. We

predict that such attempts will result in the fitted diffusion

coefficients depending on the scattering angle. For FCS, we

predict that only macroscopic diffusion can be detected when

free-diffusion fitting is attempted to walking confined diffusion

data.

We compare our model of walking confined diffusion to

existing experimental data for solutions of flexible (PEO, and

rigid polymers (fd-viruses and F-actin). We have found only one

suitable study of flexible polymers and our model fits well to

those data in intermediate to long time scales. On the other hand,

the model of walking confined diffusion fits very well to the data

for rigid polymers of a well-defined length. Some data for F-actin

may be affected by its polydispersity. We have also found

inconsistencies between some data for F-actin, which suggests

that the experiments may have been carried out in poorly

controlled solutions. The comparison shows that there is a need

for new, well-controlled experiments for F-actin and flexible

polymers (such as PEO or PEG).

The eqn. (16) and (17) derived here are ready to be fitted to

DLS and FCS experimental data for probes diffusing in polymer

solutions.
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